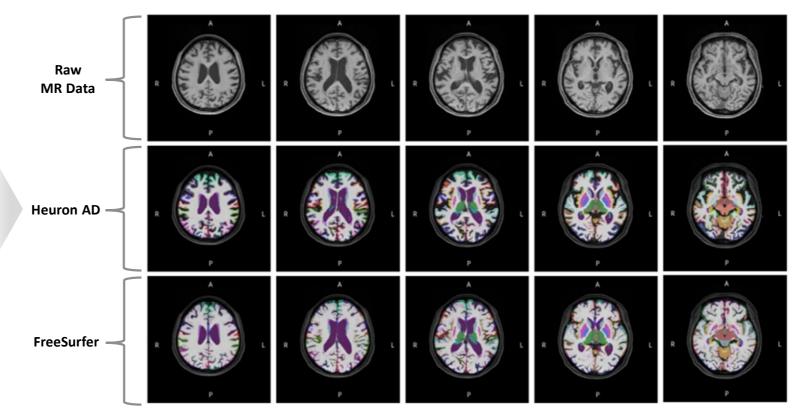
Heuron AD vs. FreeSurfer

A. Accurate Segmentation

Heuron AD uses a deep learning-based algorithm to accurately segment brain regions using T1-weighted MR images

Randomly selected, unbiased sample of MR database used to test the difference with **FreeSurfer**

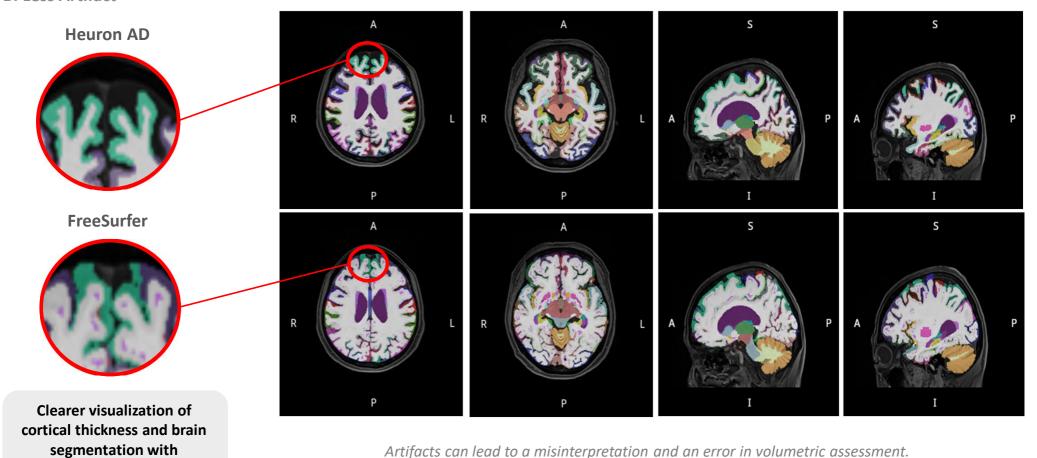


Age: 74

Gender: Female

Scan Date: May 16th, 2018 Scanner: Siemens Skyra

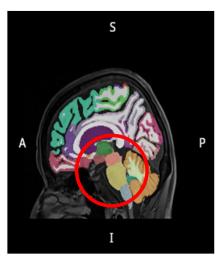
Strength: 3 Tesla

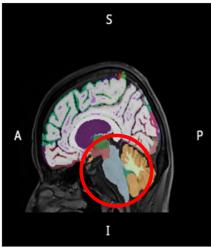


Deidentified, anonymized MR data (Case A) is available for further assessment

Heuron AD vs. FreeSurfer

less artifact


B. Less Artifact



Artifacts can lead to a misinterpretation and an error in volumetric assessment.

Heuron AD vs. FreeSurfer

C. 99 Segmented Brain Regions

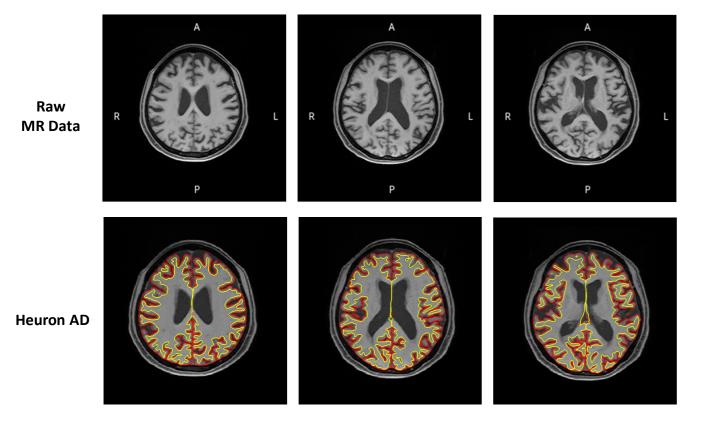
Heuron AD

FreeSurfer

Midbrain, pons, and medulla can be analyzed separately

Only the brainstem can be analyzed

#No.	Label Name:	R	G	В	
0	Unknown	0	0	0	
2	Left-Cerebral-White-Matter	245	245	245	
4	Left-Lateral-Ventricle	120	18	134	
5	Left-Inf-Lat-Vent	196	58	250	
7	Left-Cerebellum-White-Matter	220	248	164	
8	Left-Cerebellum-Cortex	230	148	34	
10	Left-Thalamus-Proper	0	118	14	
11	Left-Caudate	122	186	220	
12	Left-Putamen	236	13	176	
13	Left-Pallidum	12	48	255	
14	3rd-Ventricle	204	182	142	
15	4th-Ventricle	42	204	164	
17	Left-Hippocampus	220	216	20	
18	Left-Amygdala	103	255	255	
24	CSF	60	60	60	
26	Left-Accumbens-area	255	165	0	
28	Left-VentralDC	165	42	42	
31	Left-choroid-plexus	0	200	200	
41	Right-Cerebral-White-Matter	245	245	245	
43	Right-Lateral-Ventricle	120	18	134	
44	Right-Inf-Lat-Vent	196	58	250	
46	Right-Cerebellum-White-Matter	220	248	164	
47	Right-Cerebellum-Cortex	230	148	34	
49	Right-Thalamus-Proper	0	118	14	
50	Right-Caudate	122	186	220	
51	Right-Putamen	236	13	176	
52	Right-Pallidum	13	48	255	
53	Right-Hippocampus	220	216	20	
54	Right-Amygdala	103	255	255	
58	Right-Accumbens-area	255	165	0	
60	Right-VentralDC	165	42	42	
63	Right-choroid-plexus	0	200	221	
77	WM-hypointensities	200	70	255	
173	Midbrain	242	104	76	


Region	HCP_vol	Heuron AD_vol
eft-Lateral-Ventricle	27925.6	26283.5
.eft-Inf-Lat-Vent	1288.6	1053.9
eft-Cerebellum-White-Matter	10906.7	7 11427.7
eft-Cerebellum-Cortex	43225.4	43679.6
.eft-Thalamus-Proper	5070.9	5267.6
eft-Caudate	2671.1	l 3028.7
.eft-Putamen	2966.2	2881.6
.eft-Pallidum	1283.3	1236.2
Brd-Ventricle	2206	1843.5
lth-Ventricle	1804.7	7 1559.1
Brain-Stem	18996.4	1
Midbrain		5079.7
Pons		13350
Medulla		4157.9
.eft-Hippocampus	2029.9	2235.4
.eft-Amygdala	699.6	868.8
CSF	1230.8	3 1054.5
.eft-Accumbens-area	267.3	3 209.5
eft-VentraIDC	3036.6	1665.7
eft-vessel	13.2	2
eft-choroid-plexus	883.9	1104.8
Right-Lateral-Ventricle	19651.5	18531.1
Right-Inf-Lat-Vent	847.5	784.4
Right-Cerebellum-White-Matter	10523.9	10973.4
Right-Cerebellum-Cortex	43713.9	44476.7
Right-Thalamus-Proper	5184.5	5 5129.7
Right-Caudate	2571	L 2780.8
Right-Putamen	3336.8	3266.1

99 Segmented Brain Structures

Regional Volume Comparison FreeSurfer vs. Heuron AD

Heuron AD vs. FreeSurfer

D. Cortical Thickness Measurement

Heuron AD automatically assesses and calculates the cortical thickness information.

Recently, **cortical thickness** has been recognized as valuable information for clinicians

ARTICLE IN PRESS

Alzheimer's & Dementia

SPECIAL SECTION: State of the Field: Advances in Neuroimaging from the 2017 Alzheimer's Imaging Consortium

The personalized Alzheimer's disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment

Annie M. Racine a,b,c, Michael Brickhouse, David A. Wolk, Bradford C. Dickerson, For the Alzheimer's Disease Neuroimaging Initiative

"Aging Brain Center, Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
"Harvard Medical School, Boston, MA, USA
"Frontotemporal Disorders Unit

Pronotemporal Disonters until

"Massachusetts Al; heimer's Disease Research Center, Department of Neurology, and Athinoula A. Martinos Center for Biomedical Imaging, Massachusett.

General Hospital Boston MA. USA

Department of Neurology, Perelman School of Medicine, and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA

Abstract

Introduction: An Alzheimer's disease (AD) biomarker adjusted for age-related brain change should improve specificity for AD-related pathological burden.

Methods: We calculated a brain-age-adjusted "personalized AD cortical thickness index" (pADi) in mild cognitive impairment patients from Alzheimer's Disease Neuroimaging Initiative. We performed receiver operating characteristic analysis for discrimination between patients with and without cerebrospinal fluid evidence of AD and logistic regression in an independent sample to determine if a dichoramized pADi proticted conversion to AD dementia.

Results: Receiver operating characteristic area under the curve was 0.69 and 0.72 in the two samples. Three empirical methods sidentified the same cut-point for pAD in the discovery sample. In the validation sample, 8.5% of pAD1+ mild cognitive impairment patients were cerebrospinal fluid AD biomarker positive, pAD1+ mild cognitive impairment patients (n = 63, 38%) were more likely to progress to AD dementia after 1 (olds ratio = 2.9) and 3 (olds ratio = 2.0) years.

Discussion: The pAD1 is a personalized, magnetic resonance imaging-derived AD biomarker that redicts procression to dementia.

© 2018 The Authors, Published by Elsevier Inc. on behalf of the Alzheimer's Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

V-----

AD index; AD signature; Alzheimer's disease; Cortical thickness; Mild cognitive impairmen

1. Background

Positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers are the gold standard for identifying

"Data used in preparation of this airded were obtained from the Alzberimer's Dissess Neuroimaging initiative (ADM) database (adultation), schaoli). As such, the investigators within the ADM contributed to the design and implementation of ADM and/or provided data bat did not partiipate in analysis or withing of this report. A complete lising of ADM investigators can be found at: http://dml.ini.nci.ac.do/supreorent/uploads/ how_10_npl/SADM_Adashows/depende_Lin.pdf.

how_to_apply/ADNI_Acknowledgement_List.pdf.

*Corresponding author, Tel.: 617-726-5571; Fax: 617-726-5760.

E-meil address: bred dislease on fitting barrant adu.

individuals with molecular evidence of Alzheimer's disease (AD) meuropathology, but these procedures are invasive (CSF), expensive (PET), and only accessible in specialized centers (PET) [1,2]. Magnetic resonance imaging (MRI), on the other hand, is noninvasive, less expensive, and more readily available than PET but less specific than amyloid PET or CSF to AD-related neurodegeneration. Although the magnitude of hippocampal atrophy in patients scanned in vivo and followed to autopsy correlates with the burden of neurofibrillary unalge pathology [3]. hippocampal atrophy can also be seen in patients with a variety of neurodegenerative and other pathologies [4–6]. Spatial patterns of regional

https://doi.org/10.1016/j.adam.2018.02.007

\$2322-8729/ © 2018 The Authors, Published by Elsevier Inc. on behalf of the Alzheimer's Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/hv-nc-ad/4.00).

FLA 5.5.0 DTD ■ DADM239_proof ■ 17 March 2018 ■ 5:23 pm ■ ce

https://www.sciencedirect.com/science/article/pii/S2352872918300150